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Abstract

Neutron multiplicity counting (NMC) experiments are frequently used to perform non-destructive assay (NDA)
of special nuclear material (SNM), but MCNP R© code simulations of the counting distribution that were performed
by Miller have revealed over-calibration in the value of the Pu-239 ν. Mattingly has demonstrated the procedure for
deterministic calculations of the counting distribution moments and O’Brien implemented a first-order, adjoint-based
sensitivity analysis (SA) methodology applied to the counting distribution moments. In this report, these techniques
are used to apply SA/uncertainty quantification (UQ) to the Feynman Y and Sm2, which are ratios of the counting
distribution moments. Sm2 is less sensitive to the cross sections than Y and therefore has less variance due to
covariance in the cross sections than Y .

The Feynman Y has historically been used to infer integral properties of SNM, such as neutron dispersion, neutron
lifetime, and neutron multiplication. Sm2 is a relatively new measure of the behavior of SNM that has not yet been
used to infer integral properties of SNM, although measurements of Sm2 for different source-detector distances have
been compared to MCNP R© code simulation by McSpaden. In this report, linear and quadratic models are fit to Sm2

as a function of polyethylene reflector thickness and neutron multiplication and the observed trends are compared
to those of Y to the same independent variables. Sm2 is linear with respect to source and keff multiplication and
quadratic with respect to polyethylene reflector thickness; therefore, these characteristics of an assembly of SNM
may potentially be inferred using measurements of Sm2.

I Introduction

Neutron multiplicity counting (NMC) experiments are frequently used to perform non-destructive assay (NDA)
of special nuclear material (SNM) [1]. A neutron multiplicity counter is used to accumulate the distribution of
coincident multiplets of neutron counts for a given coincidence gate. The top portion of Fig. 1a depicts a detector
pulse train that is segmented into sequential, equal-width coincidence gates, which are so called because neutron
counts occurring within the same gate are considered to be coincident. The bottom part of Fig. 1a shows the
accumulation of the frequency of multiplet neutron counts. Figure 1b was created by accumulating several multiplet
neutron counts for a multiplicity counter counting a highly multiplying sphere of weapons-grade plutonium metal.
The red line is a Poisson distribution with the same mean.

The NMC or counting distribution for independent neutron emissions, such as neutrons emitted from (α,n)
reactions, is a Poisson distribution, where the variance and higher-order moments are all explicitly defined by the
mean. In particular, the variance of a Poisson distribution is equal to its mean. Neutrons produced in fission-
chain reactions, however, are emitted in bursts that are correlated in time. The counting distribution for fissionable
material is therefore a generalized Poisson distribution, which requires higher-order moments to fully characterize.

MCNPR© and Monte Carlo N-ParticleR© are registered trademarks owned by Los Alamos National Security, LLC, manager and
operator of Los Alamos National Laboratory. Any third-party use of such registered marks should be properly attributed to Los Alamos
National Security, LLC, including the use of the R© designation as appropriate. Any questions regarding licensing, proper use, and/or
proper attribution of Los Alamos National Security, LLC marks should be directed to trademarks@lanl.gov.
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(a) (b)

Figure 1: (a) Accumulation of the counting distribution [2]. (b) The counting distribution for a sphere of weapons-
grade plutonium metal and a Poisson distribution with the same mean [3].

The Feynman Y and Sm2 are both ratios of moments of the counting distribution. The Feynman Y variance-to-
mean ratio

Y ≡ σ2
n

n
− 1, (1)

where n and σ2
n are respectively the mean and variance of the counting distribution, is a measure of the deviation of

the counting distribution from Poisson statistics and has historically been used to infer integral properties of SNM,
such as neutron lifetime and neutron multiplication. Assay of SNM using Y requires that the detector response
function be well-characterized for the assembly [3, 4].

The Sm2 doubles-to-singles-squared ratio

Sm2 ≡
D

S2
, (2)

where S and D are respectively the first and second reduced-factorial moments of the counting distribution (often
referred to as singles and doubles), is a relatively new metric used in NDA of SNM and is independent of the
detector response function. For the same SNM assembly, two different neutron multiplicity counters or the same
multiplicity counter at two different distances from the assembly will observe the same Sm2 value. Simulations of
NMC experiments used to compute Sm2 will therefore not need to model the multiplicity counter, which removes
a potential source of systematic error (i.e. uncertainty in the detector response function and/or uncertainty in the
source-detector distance) between measured and simulated counting distribution moments [5, 6].

Miller found that MCNP R© code simulations of NMC of a 4.5-kg sphere of alpha-phase, weapons-grade plutonium
metal, a.k.a. the BeRP ball, consistently overpredicted the mean and variance of the counting distribution due to
over-calibration of the Pu-239 ν and he recommended a small scalar reduction in its value [2]. Evans used Cacuci’s
data assimilation (DA) methodology to perform an energy-dependent optimization of the Pu-239 ν using 3D Denovo
[7] simulations of gross neutron counting of the BeRP ball and he similarly recommended a reduction of one standard
deviation in its value above 100 keV incident neutron energy and two standard deviations below 100 keV [8]. The
ENDF/B-VII evaluators noted [9] that the value of the Pu-239 ν was increased by more than two standard deviations
above its previously evaluated value to match JEZEBEL critical experiments, which is consistent with the findings
of Miller and Evans. I am currently investigating DA of cross sections (which collectively refers to cross sections and
fission parameters such as the fission spectrum χ and moments of the fission multiplicity distribution p(ν)) applied
to NMC experiments to optimize cross sections such that the counting distribution moments are more accurately
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simulated with reduced uncertainty. Performing this DA requires the sensitivity of the counting distribution moments
to the cross sections as well as the variance in the counting distribution moments due to covariance in the cross
sections, which may be computed using adjoint-based sensitivity analysis and first-order uncertainty quantification
(SA/UQ), respectively. This SA/UQ methodology may also be applied to Y and Sm2 and is the primary focus of
this memo.

Muñoz-Cobo used a probabilistic description of the neutron population developed by Pàl [10] and Bell [11] to
derive the stochastic transport equation (STE), the solution of which is a probability generating function (PGF) [12].
The first moment of the PGF is the usual adjoint Boltzmann neutron transport equation (NTE), and higher-order
moments are adjoint-like transport equations with the same adjoint transport operator but different, fixed adjoint
source terms; consequently, standard transport solvers may be used to calculate these higher-order adjoint fluxes.
Mattingly [3] used Muñoz-Cobo’s methodology to perform deterministic calculations of the counting distribution
moments and O’Brien [13] demonstrated that first-order perturbation theory could be used to compute the sensitivity
of the counting distribution moments to the cross sections using adjoint-based SA methods. The same methodologies
may be used to compute Y and Sm2 and their sensitivity to the cross sections because they are ratios of moments
of the counting distribution.

The Feynman Y has historically been used to infer integral properties of SNM, such as neutron dispersion,
neutron lifetime, and neutron multiplication [14, 15]. Sm2 is a relatively new measure of the behavior of SNM that
has not yet been used to infer integral properties of SNM, although measurements of Sm2 for different source-detector
distances have been compared to MCNP R© code simulation [5, 6]. Sm2 would be useful for NDA of SNM because it is
independent of the detector response function. As a relatively simple starting point, the trend of Sm2 as a function
of polyethylene reflector thickness and neutron multiplication in the BeRP ball is contrasted with that of Y . Because
Y is a function of the detector response function while Sm2 is not, their respective trends differ significantly.

Two sets of novel results are presented in this memo: 1) The first application of SA/UQ to Y and Sm2 and 2)
analysis of trends in Y and Sm2 as a function of polyethylene reflector thickness and neutron multiplication in the
BeRP ball. Sections II.A and II.B provide a brief summary of the definition and use of Y and Sm2. Sections II.C
and II.D summarize the perturbation theory-based SA methodology and derive the specific form of the sensitivity
of the first and second counting distribution moments (a.k.a. detector response moments) to the cross sections.
Section II.E defines the sensitivity of Y and Sm2 to the cross sections in terms of the first- and second-moment
detector response sensitivities. Section II.F describes how the variance in Y and Sm2 due to covariance in the cross
sections is computed using first-order propagation of uncertainty. Section II.G provides various definitions of neutron
multiplication against which trends in Y and Sm2 are observed.

Section III.A summarizes the first application of SA/UQ of Y and Sm2. Section III.B is a first look at the trends
observed in fitting linear and quadratic models of Y and Sm2 as a function of both polyethylene reflector thickness and
neutron multiplication in the BeRP ball. Section IV provides a summary and recommendations. Sample PARTISN
input decks are provided in Appendix A.

II SA/UQ methodology

II.A The Feynman Y

Y defined in Eq. (1) may be recast as

Y =
R2

R1
, (3)

where R1 is

R1 ≡
〈
ψ+

1 , Q
〉

=
〈
ψ,Q+

1

〉
(4)
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and R2 is

R2 ≡
〈
ψ,Q+

2

〉
+
〈
S,Q+

2,sf

〉
. (5)

S is the spontaneous fission rate density and spectrum of the forward intrinsic source,

S(~r,E) ≡ χsf (E) F (~r)

4π
, (6)

where χsf is the spontaneous fission neutron spectrum and F is the rate density at which spontaneous fissions occur,
such that the forward, intrinsic source Q may be written as

Q(~r,E) ≡ νsf S(~r,E). (7)

R1 of Eq. (4) is the mean count rate of a detector and is equivalent to the mean of the NMC distribution (n from
Eq. (1)) and singles. R1 is computed by solving the usual forward or adjoint NTE for the forward ψ or adjoint
ψ+

1 flux, respectively, by defining the adjoint source term Q+
1 as the detector response function. Microscopic cross

sections for reaction x and isotope j are denoted by σx,j and the corresponding number density is denoted by Nj
such that Σx,j = Nj σx,j is the macroscopic cross section for reaction x and isotope j. For a multi-region assembly,
all material properties, including Nj and all microscopic cross sections, are assumed to be constant in each region.
Nj in different regions for the same isotope j may still have different values.

Muñoz-Cobo demonstrated that higher-order moments of the counting distribution may be computed by using
the solution of the STE to derive higher-order adjoint NTEs [12]. The second-moment detector response R2 of Eq.
(5) is the variance in the counting distribution (in excess of the Poisson contribution) due to spontaneous and induced
fission and is computed with the second-order adjoint source in Eq. (5),

Q+
2 (~r,E) ≡ ν (ν − 1)(E) Σf (E) I2

1 (~r), (8)

which is the source for the second-order adjoint NTE

L+ψ+
2 = Q+

2 . (9)

The spontaneous fission, second-order adjoint source in Eq. (5) is

Q+
2,sf (~r) ≡ ν (ν − 1)sfI

2
1,sf (~r). (10)

ν(ν − 1) and ν(ν − 1)sf are the second factorial moments of the induced and spontaneous fission multiplicity distri-
butions p(ν,E) and psf (ν), respectively, with ν and νsf as their respective means. The order-k factorial moments of
p(ν,E) and psf (ν) are

ν(ν − 1)...(ν − k + 1)(E) ≡
νmax∑
ν=0

ν(ν − 1)...(ν − k + 1)p(ν,E), (11)

ν(ν − 1)...(ν − k + 1)sf ≡
νmax∑
ν=0

ν(ν − 1)...(ν − k + 1)psf (ν) (12)

respectively, where ν represents the number of neutrons emitted per fission. Note that p(ν,E) and its moments are
functions of incident neutron energy whereas psf (ν) is independent of incident neutron energy.

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA
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The “importance” of induced and spontaneous fission neutrons to the mean count rate are respectively

I1(~r) ≡
∫
dΩ′

∫
dE′

χ(E′)

4π
ψ+

1 (~r, Ω̂′, E′), (13)

I1,sf (~r) ≡
∫
dΩ′

∫
dE′

χsf (E′)

4π
ψ+

1 (~r, Ω̂′, E′), (14)

where χ is the induced fission neutron spectrum. Note that χ is the distribution of energies for neutrons emerging
from induced fission and is here approximated as independent of incident neutron energy. In the present notation,
it is assumed that spontaneous and induced fission each only occur in one isotope. Moments of p(ν) and psf (ν), χ,
χsf , and Σf therefore do not have an isotope index.

For a Poisson-distributed process where neutron emissions are independent of one another, the variance of the
counting distribution is simply equal to the mean and R2 is zero. The variance in a counting distribution accumulated
by counting SNM will, however, be greater than the mean because fission chain reactions are not independent of one
another. Mattingly’s deterministic method [3] can be used to calculate Y because it may be expressed in terms of
R1 and R2.

II.B Sm2

Sm2 defined in Eq. (2) may also be recast in terms of R1 and R2. Singles is identical to the mean count rate R1

and both R2 and doubles are related to the variance of the counting distribution. R2 is the second factorial moment
of the counting distribution C(n) while doubles is the reduced-factorial moment of C(n). An order-k factorial and
reduced-factorial moment of C(n) may respectively be defined as

n (n− 1) ... (n− k + 1) ≡
N∑
n=1

n (n− 1) ... (n− k + 1)C(n), (15)

n (n− 1) ... (n− k + 1)r ≡
1

k!

N∑
n=1

n (n− 1) ... (n− k + 1)C(n), (16)

where the difference between Eq. (15) and Eq. (16) is the normalization factor 1
k! . This relationship between factorial-

and reduced-factorial moments means that doubles and R2 have the simple relationship

D =
1

2
R2, (17)

and Eq. (2) may be expressed as

Sm2 =
1

2

R2

R2
1

. (18)

Thus, Mattingly’s deterministic method [3] can also be used to calculate Sm2.

Sm2 is independent of the detector response because R1 and R2 are a linear and quadratic function of the detector
response function, respectively. R1 in Eq. (4) is the inner product of the forward flux and the detector response
function itself. The second-moment adjoint source terms (Eqs. (8) and (10)) used to compute R2 in Eq. (5) are
computed with the square of I1 and I1,sf , respectively, which means that the source terms contribute as the square
of the detector response function. For the same assembly, counting distributions accumulated by different neutron

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA
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multiplicity counters or the same multiplicity counter at different distances from the assembly will yield the same
Sm2 values. This property is particularly useful when performing simulations of NMC experiments because the
multiplicity counter does not need to be modeled. McSpaden demonstrated that Sm2 values computed via MCNP R©

code simulations of the BeRP ball counted by the MC-15 neutron multiplicity counter agree with experimental
values and are invariant with respect to source-detector distance [6]. With the need for detailed detector models in
simulations obviated, a potential source for systematic errors between simulation and experiment is ameliorated.

II.C Sensitivity analysis of the mean count rate

The forward and adjoint NTE may be discretized in energy via the multigroup approximation [16],

fg =

∫
∆Eg

dE W (E)f(E)∫
∆Eg

dE W (E)
, g = 1, ..., G, (19)

where the cross sections, fluxes, and sources are averaged over a small energy interval ∆Eg with an averaging function
W (E). Multigroup cross sections and p(ν,E) moments may be obtained by choosing W (E) to be the forward, scalar
flux. Multigroup fluxes, sources, and fission spectrum may be obtained by setting W (E) to unity.

With the multigroup approximation, the sensitivity of R1 to a cross section (or fission parameter) α for isotope
j at group g using first-order perturbation theory as described by O’Brien may be expressed as [13]

∂R1

∂αj,g
=

〈
∂Q+

1

∂αj,g
, ψ

〉
+

〈
ψ+

1 ,
∂Q

∂αj,g
− ∂L

∂αj,g
ψ

〉
, (20)

where the inner product is defined as

〈f, h〉 ≡
∫
d3r

∫
dΩ

G∑
g′=1

fg′(~r, Ω̂) hg′(~r, Ω̂). (21)

The magnitude of the absolute sensitivity defined in Eq. (20) can vary greatly with respect to cross section type
and energy group, so it is useful to define a relative sensitivity that is scaled by the cross section and response values
themselves,

SR1,αj,g
=
αj,g
R1

∂R1

∂αj,g
. (22)

It will always be clear from context whether S refers to the spontaneous fission rate density and spectrum of Eq.
(6) or a relative sensitivity, such as that defined in Eq. (22). The relative sensitivity is used to approximate a linear
relationship between a small change in the cross section and a corresponding change in R1. Table 1 summarizes the
analytic form of the relative sensitivity of R1 to specific cross sections. The sensitivity of R1 to the cross sections
may be calculated by solving for forward and adjoint angular fluxes and flux moments and computing the sums and
integrals given in Table 1 for a specific cross section.

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA
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Table 1: Relative sensitivity of R1 to the set of cross sections χg, νg, σf,g, σs,j,g, σc,j,g. An analogous table is given
by Favorite in Table 1 in the SENSMG manual for the indirect effect of the sensitivity of neutron leakage to the
cross sections [17]. The sensitivities given by Favorite are defined using a chi matrix (fission neutron spectrum as a
function of incident neutron energy) while the sensitivities given here are defined using a chi vector (fission neutron
spectrum independent of incident neutron energy) [16]. SR1,σs,j,g is the sum of Favorite’s sensitivity of R1 to σms,j,g→g′
over all outgoing energy groups g′ and Legendre polynomial expansion moments m.

SR1,χg
, (a)

1

R1

∫
d3r χg φ

+,0
1,g (~r)

G∑
g′=1

νΣf,g′ φ
0
g′(~r)

SR1,νg

1

R1

∫
d3r I1(~r) νΣf,g φ

0
g(~r)

SR1,σf,g

1

R1

[∫
d3r I1(~r) νΣf,g φ

0
g(~r)−∫

d3r

∫
dΩ Σf,g ψg(~r, Ω̂) ψ+

1,g(~r, Ω̂)

]

SR1,σs,j,g

1

R1

∫ d3r

M∑
m=0

φmg (~r)

G∑
g′=1

Σms,j,g→g′ φ
+,m
1,g′ (~r)−

∫
d3r

∫
dΩ ψg(~r, Ω̂)Σ0

s,j,g ψ
+
1,g(~r, Ω̂)

]

SR1,σc,j,g − 1

R1

∫
d3r

∫
dΩ Σc,j,g ψg(~r, Ω̂) ψ+

1,g(~r, Ω̂)

(a) This definition is for an unconstrained sensitivity. See [18] for relationship between unconstrained and constrained sensitivities.

The sensitivities given in Table 1 are defined in terms of forward and adjoint inner products for angular fluxes
as well as Legendre polynomial expansion moments of the angular fluxes for a one-dimensional (spherical) geometry.
The scatter cross section is also given in terms of its Legendre polynomial expansion moments. The form of the
order-m forward flux, adjoint flux, and scatter cross section moments are respectively defined as [16]

φmg (~r) =
1

2

∫ 1

−1

dµ Pm(µ) ψg(~r, µ), (23)

φ+,m
k,g (~r) =

1

2

∫ 1

−1

dµ Pm(µ) ψ+
k,g(~r, µ), k = 1, 2, (24)

Σms,j,g→g′ =
2m+ 1

2

∫ 1

−1

dµ Pm(µ)

∫ 1

−1

dµ′ Pm(µ′) Σs,j,g→g′(µ · µ′), (25)

Σms,j,g =

G∑
g′=1

Σms,j,g→g′ , (26)

where Pm is a Legendre polynomial of order m and M is an arbitrarily chosen maximum Legendre polynomial order.
m = 0 denotes an isotropic flux or scatter cross section while m > 0 denotes increasing orders of anisotropy. The
inclusion of the 2m+1 normalization factor in Eq. (25) is consistent with the scatter cross section moments generated
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by SCALE, from which the cross sections and their covariances are obtained [19].

Inner products between the forward and adjoint flux moments must reflect the fact that the adjoint angular flux
is defined for directions that are opposite of the forward angular flux. Favorite distinguished between computational
moments, which are calculated by transport solvers and defined by Eqs. (23), (24), and (25), and inner product
moments, which account for the reversal in the adjoint flux direction [20]. Irrespective of geometry, this amounts to
a simple correction factor that is positive for the zeroeth and even moments and negative for odd moments. The
relationship between computational and inner product moments for the forward and adjoint flux moments is then

IPφmg = (−1)mφmg , (27)

IPφ+,m
k,g = (−1)mφ+,m

k,g , k = 1, 2, (28)

such that the inner product between the forward and adjoint flux moments is

〈
IPφmg , φ

+,m
k,g

〉
=
〈
IPφ+,m

k,g , φ
m
g

〉
=
〈

(−1)mφmg , φ
+,m
k,g

〉
, k = 1, 2. (29)

II.D Sensitivity analysis of the second-moment detector response

First-order perturbation theory may also be used to derive the sensitivity of the second-moment detector response
R2 to a cross section α for isotope j at group g [13],

∂R2

∂αj,g
=

〈
ψ+

2 ,
∂Q

∂αj,g
− ∂L

∂αj,g
ψ

〉
+ 2

〈
Φ1 + Φ1,sf ,

∂Q+
1

∂αj,g
− ∂L+

∂αj,g
ψ+

1

〉
+〈

∂Q+
2

∂βg
, ψ

〉
+

〈
∂Q+

2,sf

∂βg
, S

〉
+

〈
Q+

2,sf ,
∂S

∂αj,g

〉
,

(30)

where βg = {ν(ν − 1)g, ν(ν − 1)sf , σf,g, χg, χg,sf} is the subset of αj,g that appears explicitly in the adjoint source
terms in Eqs. (8) and (10).

Two new forward fluxes, Φ1 and Φ1,sf , have been introduced in Eq. (30) that represent the flux of neutrons that
contribute to R2 and are obtained by solving special forward transport equations that satisfy [13]

LΦ1 = I1Qf1, (31)

LΦ1,sf = I1,sfQf1,sf , (32)

where the new forward source terms are

Qg,f1(~r) = χg

G∑
g′=1

ν(ν − 1)Σf,g′ φ
0
g′(~r), (33)

Qg,f1,sf (~r) = χg,sf

G∑
g′=1

ν(ν − 1)sf Sg′(~r). (34)

The relative sensitivity of R2 to a cross section has the same form and interpretation as that for R1,

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA
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SR2,αj,g =
αj,g
R2

∂R2

∂αj,g
. (35)

Table 2 summarizes the analytic form of the relative sensitivity vectors of R2 to the transport parameters at group
g. The new forward fluxes defined by Eqs. (31) and (32) are added for convenience,

Φ = Φ1 + Φ1,sf . (36)

The sensitivity of R2 to each cross section is computed in the same way as the sensitivity of R1 to each cross section
is (see Sec. II.C).

Table 2: Relative sensitivity of R2 to the set of cross sections χg, νg, ν(ν − 1)g, σf,g, σs,j,g, σc,j,g.

SR2,χg
, (a)

1

R2

∫ d3r χg φ
+,0
2,g (~r)

G∑
g′=1

νΣf,g′ φ
0
g′(~r) + 2

∫
d3r χg φ

+,0
1,g (~r)

G∑
g′=1

νΣf,g′ ϕ
0
g′(~r)+

2

∫
d3r χg φ

+,0
1,g (~r) I1(~r)

G∑
g′=1

ν(ν − 1)Σf,g′ φ
0
g′(~r)



SR2,νg

1

R2

[∫
d3r I2(~r) νΣf,g φ

0
g(~r) + 2

∫
d3r I1(~r) νΣf,g ϕ

0
g(~r)

]

S
R2,ν(ν−1)g

1

R2

[∫
d3r ν(ν − 1)Σf,g I

2
1 (~r) φ0

g(~r)

]

SR2,σf,g

1

R2

[ ∫
d3r I2(~r) νΣf,g φ

0
g(~r)−

∫
d3r

∫
dΩ Σf,g ψ

+
2,g(~r, Ω̂) ψg(~r, Ω̂)+

2

∫
d3r I1(~r) νΣf,g ϕ

0
g(~r)− 2

∫
d3r

∫
dΩ Σf,g ψ

+
1,g(~r, Ω̂) Φg(~r, Ω̂)+∫

d3r I2
1 (~r) ν(ν − 1)Σf,g φ

0
g(~r)

]

SR2,σs,j,g
, (b)

1

R2

 ∫
d3r

M∑
m=0

φmg (~r)

G∑
g′=1

Σms,j,g→g′ φ
+,m
2,g′ (~r)−

∫
d3r

∫
dΩ ψg(~r, Ω̂) Σ0

s,j,g ψ
+
2,g(~r, Ω̂)+

2

∫
d3r

M∑
m=0

ϕmg (~r)

G∑
g′=1

Σms,j,g→g′ φ
+,m
1,g′ (~r)− 2

∫
d3r

∫
dΩ Φg(~r, Ω̂) Σ0

s,j,g ψ
+
1,g(~r, Ω̂)



SR2,σc,j,g − 1

R2

[∫
d3r

∫
dΩ ψ+

2,g(~r, Ω̂) Σc,j,g ψg(~r, Ω̂) + 2

∫
d3r

∫
dΩ ψ+

1,g(~r, Ω̂) Σc,j,g ϕg(~r, Ω̂)

]
(a) This definition is for an unconstrained sensitivity. See [18] for relationship between unconstrained and constrained sensitivities.

(b) This is the sensitivity of R2 to all neutron scatter reactions from group g to any other group for all Legendre polynomial expansion orders.

The second-moment forward flux Φ is also given in terms of Legendre polynomial expansion moments and is
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discretized via the multigroup approximation,

ϕmg (~r) =
1

2

∫ 1

−1

dµ Pm(µ) Φg(~r, µ). (37)

The “importance” of induced fission neutrons to the second-moment detector response I2 in Table 2 is defined as

I2(~r) ≡
G∑

g′=1

χg′ φ
+,0
2,g′(~r), (38)

which is similar to the definition of I1 in Eq. (13).

The first two terms in Eq. (30) contain ν in the forward and adjoint transport operators, respectively, and the

third term contains ν(ν − 1) in Q+
2 . Because ν and ν(ν − 1) are treated as independent parameters,

∂Q+
2

∂νg
= 0 in the

third term; therefore, SR2,νg
only has a contribution from the first two terms. ν(ν − 1) only appears in Q+

2g and so
S
R2,ν(ν−1)g

only has a contribution from the third term.

II.E Sensitivity analysis of the Feynman Y and Sm2

The relative sensitivity of Y to a cross section is a linear combination of the relative sensitivities of R1 and R2 to
that cross section, i.e.,

SY,αj,g
= SR2,αj,g

− SR1,αj,g
. (39)

The relative sensitivity of Sm2 to a cross section may be similarly expressed as

SSm2,αj,g = SR2,αj,g − 2SR1,αj,g , (40)

where the factor of 2 in Eq. (40) is due to R1 being squared in the denominator of Eq. (18).

II.F Uncertainty quantification

The variance in Y and Sm2 due to covariance in the cross sections and fission parameters may be estimated with
the usual formula for first-order propagation of uncertainty,

var(f) = STf,α cov(α,α) Sf,α, f = Y,Sm2. (41)

Let X be the number of cross sections, J be the number of isotopes, G be the number of energy groups, and T be
the product of X, J , and G. Then sf,α is a T × 1 vector of sensitivities whose elements are Sf,αj,g and cov(α,α) is
a T × T matrix of covariances between each cross section for each isotope and energy group. Note that there may
be covariance between different isotopes (e.g. Pu-239 fission to Pu-240 fission), cross sections (e.g. the scatter and
fission cross sections), and energy groups of the same cross section. The uncertainty in Y and Sm2 is simply the
square root of Eq. (41).
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II.G Neutron multiplication definitions

The neutron multiplication of an assembly of material refers to the number of neutrons produced per source
neutron. A material in which induced fissions or (n, xn) reactions for x > 1 do not occur will have a neutron
multiplication of 1 by definition, while a material in which these events may occur will have a neutron multiplication
greater than 1. Spontaneous fission events have an intrinsic multiplicity defined by a material’s p(ν)sf distribution,
but in the absence of induced fission or (n, xn) reactions for x > 1, the neutron multiplication of the assembly
is still unity. Spontaneous fission events occur independent of a source neutron and therefore are not included in
the definition of neutron multiplication, although neutrons emitted from spontaneous fission may still act as source
neutrons.

One way to define neutron multiplication is in terms of neutron leakage from the system, i.e.,

ML ≡
rate of neutron leakage

rate of source neutron emission
. (42)

Leakage multiplication describes the total number of neutrons produced by the assembly that leave the system (and
are thus available for detection) per source neutron. For a static, subcritical assembly, the rate of source neutron
emission will remain unchanged with the addition of reflector material, while the rate of neutron leakage may vary.

Another way to define neutron multiplication is in terms of the production of neutrons in the assembly, i.e.,

MS ≡
rate of source neutron emission + rate of neutron production

rate of source neutron emission
. (43)

Source multiplication describes the total number of neutrons produced by the assembly (not only those that escape
the assembly) per source neutron. As with the leakage multiplication, as reflector material is added or removed, the
rate of source neutron production will not vary, but the rate of neutron production will change.

A third way to define neutron multiplication is in terms of the effective multiplication factor keff, i.e.,

Mkeff
≡ 1

1− keff
, (44)

where

keff ≡
fission neutron production rate

fission neutron loss due to leakage and absorption rate
. (45)

keff is the largest eigenvalue of the homogeneous NTE (i.e. the NTE for a critical assembly without an intrinsic
source), where the corresponding eigenvector is the fundamental flux mode, which persists longer in time than
higher-order flux modes. While the leakage and source multiplication are defined for a subcritical assembly with a
fixed source, keff multiplication is defined either in the absence of a fixed source or with the assumption that the
spatial and spectral fixed source distribution is identical to that of the induced fission source. It is also only a valid
relationship for assemblies that are close to critical.

III Results and analysis

III.A PARTISN simulations of an NMC experiment

One-dimensional (spherical), 44-group PARTISN simulations of the nPod neutron multiplicity counter counting
the BeRP ball in bare and polyethylene-reflected configurations were used to compute Y and Sm2, their sensitivity
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to the cross sections, and their variance due to covariance in the cross sections. Figure 2 illustrates the corresponding
NMC experiment [2]. The PARTISN simulations were performed using 256 discrete ordinates, order-5 Legendre
polynomial expansion of the scatter cross section, 10−6 convergence tolerance, and a uniform spatial mesh cell
thickness of 0.01 cm in the plutonium and polyethylene. The material compositions are given in Table 3 and the
problem geometry is given in Table 4.

(a) (b)

Figure 2: Setup of the NMC experiment. (a) A 4.5-kg sphere of weapons-grade, alpha-phase plutonium metal
(a.k.a. the BeRP ball) nested in polyethylene reflectors. (b) The nPod neutron multiplicity counter, which is a
polyethylene-moderated array of 15 He-3 proportional counters [2].

Table 3: Number density of each isotope in each material.

Material Isotope Number density
(

atom
b cm

)
plutonium Pu-239 4.605952× 10−2

Pu-240 2.905037× 10−3

polyethylene H-1 8.098822× 10−2

C-12 4.040160× 10−2
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Table 4: The number of spatial cells in and the outer radius of the bare and polyethylene-reflected BeRP ball
configurations.

Reflector thickness (cm) Cells in plutonium Cells in polyethylene Outer radius (cm)

0 379 0 3.794

1.3 379 127 5.064

2.5 379 254 6.334

3.8 379 381 7.604

7.6 379 762 11.414

15.2 379 1524 19.034

The set of 44-group cross sections included in the SA/UQ are those given in the caption for Table 2 for Pu-239
and H-1. Pu-240 is not included in the SA/UQ because it primarily acts as the spontaneous fission source that drives
induced fission in Pu-239, while C-12 is not included in the SA/UQ because its contribution is negligibly small.
The 44-group cross sections and their covariance data were obtained from the ENDF/B-VII.1 cross section library
included with the SCALE code package [19].

Figure 3a is the relative sensitivity of Y to the Pu-239 ν for the bare and 3.8-cm polyethylene-reflected BeRP
ball configurations. Figure 3b is an analogous plot for Sm2. The sensitivity of Y and Sm2 to the Pu-239 ν are given
because ν has the greatest influence on the counting distribution moments.

(a) (b)

Figure 3: Relative sensitivity of (a) Y and (b) Sm2 to the Pu-239 ν for the bare and 3.8-cm polyethylene-reflected
BeRP ball cases.

Y is more sensitive to ν than Sm2 for the bare and reflected configurations. An increase in ν will increase both
R1 and R2 because more neutrons will be emitted per induced fission in Pu-239. R2 will increase more than R1

because the system will emit larger bursts of neutrons that are correlated in time, which contribute more to the
variance of the counting distribution (in excess of the Poisson contribution) than to the mean (which is entirely the
Poisson contribution). Sm2 is the ratio of R2 to R1 squared (see Eq. (18)), which means that it will increase more
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slowly with ν than will Y .

The sensitivity of Y and Sm2 to ν both have the largest magnitude in the fast energy groups, which indicates
that changes in the fast group ν will have the greatest effect on Y and Sm2. Additionally, the magnitude of the
sensitivities increases significantly from the bare to reflected cases. In particular, the reflected case is sensitive to
neutrons at all energies, while the bare case is sensitive to fast neutrons only. Neutrons that would otherwise escape
the BeRP ball may instead be reflected and slowed down by the polyethylene, resulting in a greater number of
neutrons available in the plutonium at lower energies, at which neutrons are most likely to induce fission. Y and
Sm2 are therefore more highly influenced by changes in ν in the reflected case than in the bare case.

Figure 4a shows the relative sensitivity totals of Y to all of the cross sections for the bare and 3.8-cm polyethylene-
reflected BeRP ball configurations. Figure 4b is an analogous plot for Sm2. The totals are the sum of the sensitivities
over group and are useful for comparing the effect of a change in each of the cross sections on Y and Sm2.

(a) (b)

Figure 4: Relative sensitivity totals of (a) Y and (b) Sm2 to the cross sections for the bare and 3.8-cm polyethylene-
reflected BeRP ball cases.

The most influential cross sections on Y and Sm2 are ν and σf because they describe the number of neutrons
emitted per fission and the probability that a fission will occur, respectively, which directly impact the number of
neutrons produced by the assembly. The capture cross section has a negative sensitivity total while the other cross
sections have a positive sensitivity total. This means that increasing the capture cross sections will decrease Y and
Sm2 while increasing the other cross sections will increase Y and Sm2. The sensitivity total of ν(ν − 1) is small
compared to the other sensitivity totals, particularly ν. Fission chains in highly multiplying material (such as the
BeRP ball) tend to be hundreds of generations long, which means that the number of neutrons emitted from the
BeRP ball is driven primarily by the number of neutron generations, which is more greatly affected by the mean of
p(ν,E) than by its dispersion.

Figure 5a is a plot of the measured [2] and simulated Feynman Y values for each BeRP ball configuration. The
uncertainty in the simulated Y is due only to the covariance in the cross sections. The uncertainty in the measured
Y is due only to the random nature of neutron counting and is too small to see on the plot. Figure 5b is an analogous
plot of Sm2.
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(a) (b)

Figure 5: Y (a) and Sm2 (a) values for the bare and all polyethylene-reflected BeRP ball cases. Uncertainty in the
simulated values is due only to covariance in the cross sections.

Because Sm2 is less sensitive to the cross sections than Y, it also has less variance (relative to its respective
response value) due to covariance in the same cross sections. The measured and simulated Y become increasingly
dissimilar as more reflector material is added, and a similar trend is observed in Sm2. As discussed in Section I, the
same trend was observed by Miller [2] and Evans [8] in the counting distribution moments and found to be caused
primarily by over-calibration in the Pu-239 ν. As previously discussed, an increase in ν will increase both R1 and
R2, with R2 increasing at a rate faster than R1, which will lead to an increase in Y and Sm2. Y and Sm2 are more
sensitive to ν in the reflected case than the bare, so the effect of a change in ν is amplified as polyethylene is added.

Y peaks at 7.6 cm of polyethylene reflector because it is a function of the detector response, which depends on
neutron leakage. As polyethylene is added to the BeRP ball, neutrons are moderated down to energies at which
fissions are more likely to occur and are reflected back into the plutonium metal. With enough polyethylene, the
probability that neutrons are parasitically captured becomes comparable to the probability that neutrons will leave
the system. The rise and fall of Y as a function of polyethylene reflector thickness is indicative of the competition
between an increase in the number of neutrons produced by the assembly and the probability that neutrons are
parasitically captured or moderated down to energies below which the nPod is sensitive. Sm2 is insensitive to the
detector response and therefore monotonically increases with respect to reflector thickness.

III.B Fitting the Feynman Y and Sm2 vs reflector thickness and neutron multiplica-
tion

One-dimensional (spherical), 44-group PARTISN simulations of gross neutron counting experiments of the nPod
neutron multiplicity counter counting the BeRP ball in bare and polyethylene-reflected configurations were used to
compute source and leakage multiplication. keff-eigenvalue PARTISN simulations of the BeRP ball were used to
compute keff multiplication. The same PARTISN solver options, materials, and geometry used in Sec. III.A were
used for these calculations. Figure 6 is a plot of source, keff, and leakage multiplication as a function of polyethylene
reflector thickness.
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Figure 6: Source, keff, and leakage multiplication as a function of polyethylene reflector thickness.

Leakage multiplication is defined in terms of the neutron leakage and therefore follows a trend similar to that
of Y as a function of reflector thickness. The source and keff multiplication monotonically increase as a function of
reflector thickness because they are defined in terms of neutrons that are within the system and do not depend on
neutron leakage. Their values are similar to one another for all polyethylene reflector thicknesses because the Pu-240
spontaneous fission neutron spectrum is similar to the Pu-239 induced fission neutron spectrum.

Figure 7 is a plot of a linear and a quadratic model fit to the simulated Y and Sm2 as a function of source
multiplication. Figures 8, 9, and 10 are analogous plots of Y and Sm2 as a function of keff multiplication, leakage
multiplication, and polyethylene reflector thickness, respectively. The uncertainty in Y and Sm2 is again that due
to covariance in the cross sections. The fits were performed using the Levenburg-Marquardt algorithm to minimize
a chi-squared error metric.

(a) (b)

Figure 7: Fit of a linear and quadratic model to the simulated (a) Y and (b) Sm2 as a function of source multiplication.
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(a) (b)

Figure 8: Fit of a linear and quadratic model to the simulated (a) Y and (b) Sm2 as a function of keff multiplication.

(a) (b)

Figure 9: Fit of a linear and quadratic model to the simulated (a) Y and (b) Sm2 as a function of leakage multipli-
cation.

(a) (b)

Figure 10: Fit of a linear and quadratic model to the simulated (a) Y and (b) Sm2 as a function of polyethylene
reflector thickness.

There is a linear relationship between Sm2 and both source and keff multiplication, and the behavior of Sm2 as a
function of reflector thickness appears to be quadratic. Measurements of Sm2 may therefore be used to infer specific
types of neutron multiplication or reflector thickness. The behavior of Y as a function of neutron multiplication and
reflector thickness is not adequately described by the linear or quadratic models, nor is the behavior of Sm2 as a
function of leakage multiplication.

IV Summary and recommendations

I have performed the first calculation of the variance Y and Sm2 due to covariance in the cross sections using
deterministic (PARTISN) calculations of the counting distribution moments and first-order, adjoint-based SA. Sm2
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has less variance due to covariance in the cross sections than Y because of its insensitivity to the detector response
function. Despite this, Y analysis may still be preferred because of its historical use in inferring integral quantities
of SNM [14, 15, 1, 3, 4]. On the other hand, Sm2 has a linear relationship with source and keff multiplication and a
quadratic relationship with reflector thickness, making it potentially useful for these integral properties, independent
of the choice in detector type and placement with respect to the assembly [5, 6].
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Appendix A Sample PARTISN input decks

This input deck was used to perform a fixed source (ievt = 0), forward (ith = 0) transport solve for the 3.8-cm
polyethylene-reflected BeRP ball. The file “xslib” refers to the cross section library generated by the SCALE code
package [19]. “chivec” was also obtained from SCALE. The fixed source “sourcf” was computed using a Watt fission
spectrum for Pu-240 with parameters a = 0.794930 MeV, b = 4.68927 MeV −1 (from Appendix C, Table 9.1.2.2 of
[21]) and a rate of spontaneous fission neutron emission from Pu-240 in the BeRP ball of 2.78×105 SF neutrons emitted

sec
(Table III of [2]).

1 0 0

fwd_npod_3_collapsed_44

/ BLOCK 1

igeom=sphere

isn=256

ngroup=44

niso=4

mt=2

nzone=2

im=2

it=760

t

/ BLOCK 2

xmesh=

0.0

3.7938

7.604

xints=

379

381

zones=

1

2

t

/ BLOCK 3

lib=xslib

i2lp1= 1

ititl= 1

names="c", "pu-239", "pu-240", "h-poly"

maxord= 5

ihm= 74

iht= 9

ihs= 31

ifido= 2

savbxs= 0

chivec=

7.8298399999999994e-03

1.8158700000000000e-02

5.0958200000000002e-02

1.6236200000000001e-01

8.7765200000000002e-02

2.4851700000000001e-02

1.1633200000000000e-01

1.2526100000000001e-01

1.5820999999999999e-01

1.6231599999999999e-01

7.4411000000000005e-02

An Equal Opportunity Employer/Operated by Los Alamos National Security LLC for DOE/NNSA



To Distribution

XCP-3:18-052(U) 22 October 31, 2018

1.0074600000000000e-02

6.4720299999999995e-04

7.7167999999999996e-04

5.1216199999999999e-05

4.3478500000000001e-08

1.3526600000000000e-09

1.1891600000000001e-10

5.1118999999999997e-12

4.4013400000000003e-12

1.9974100000000001e-12

2.0159900000000002e-12

8.7211099999999998e-13

3.1704400000000002e-13

9.0580200000000006e-14

3.4281099999999998e-14

2.8799900000000001e-15

2.6941799999999999e-15

2.5083700000000002e-15

4.4593299999999998e-15

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

t

/ BLOCK 4

matls=

m1

pu-239 0.0460595191156

pu-240 0.00290503749976

;

m2

h-poly 0.0809882249

c 0.0404015978

;

assign=

zone1 m1 1.0 ;

zone2 m2 1.0 ;

t

/ BLOCK 5

ievt=0

isct=5

epsi= 1.00E-06

iitm=999

srcacc=no

npeg=2

avatar=1

raflux=1 rmflux=1
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xsectp=2

ith=0

iitl=0

oitm=9999

sourcf=

379r 3.2183315687538063e+00 381r 0.0 ;

379r 1.1986607422794732e+01 381r 0.0 ;

379r 4.4331060606044495e+01 381r 0.0 ;

379r 1.7852172035076097e+02 381r 0.0 ;

379r 1.0520053508284677e+02 381r 0.0 ;

379r 3.1693082875545414e+01 381r 0.0 ;

379r 1.4435263000478150e+02 381r 0.0 ;

379r 1.6124776107669450e+02 381r 0.0 ;

379r 2.0816401111097369e+02 381r 0.0 ;

379r 2.1279278916978717e+02 381r 0.0 ;

379r 9.8324123632633686e+01 381r 0.0 ;

379r 1.3611771588377923e+01 381r 0.0 ;

379r 8.7320081608675915e-01 381r 0.0 ;

379r 1.0371608984499858e+00 381r 0.0 ;

379r 7.6852703925508956e-02 381r 0.0 ;

379r 6.0437195244846210e-03 381r 0.0 ;

379r 4.2452903812439377e-04 381r 0.0 ;

379r 6.7410380091630675e-05 381r 0.0 ;

379r 4.3535872405907212e-06 381r 0.0 ;

379r 4.2450246637305983e-06 381r 0.0 ;

379r 2.2071094399002550e-06 381r 0.0 ;

379r 2.6194585207126969e-06 381r 0.0 ;

379r 1.4434427880193511e-06 381r 0.0 ;

379r 6.8827966914412380e-07 381r 0.0 ;

379r 2.5700365218059759e-07 381r 0.0 ;

379r 1.2249534292605695e-07 381r 0.0 ;

379r 1.1858453190838746e-08 381r 0.0 ;

379r 1.1469474304884600e-08 381r 0.0 ;

379r 1.1066826302061150e-08 381r 0.0 ;

379r 2.0862954895162132e-08 381r 0.0 ;

379r 9.7596591725520346e-09 381r 0.0 ;

379r 9.2830931208539340e-09 381r 0.0 ;

379r 8.7806742932256685e-09 381r 0.0 ;

379r 1.5925358136448806e-08 381r 0.0 ;

379r 1.3448261074539758e-08 381r 0.0 ;

379r 6.6563257113148412e-09 381r 0.0 ;

379r 3.7288173327726083e-09 381r 0.0 ;

379r 1.6156726135457400e-09 381r 0.0 ;

379r 1.4244074296968286e-09 381r 0.0 ;

379r 5.9536816077276945e-10 381r 0.0 ;

379r 1.5363563937478885e-09 381r 0.0 ;

379r 1.7805093094643969e-10 381r 0.0 ;

379r 2.4649191199752855e-10 381r 0.0 ;

379r 8.3459943427857428e-11 381r 0.0 ;

t
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This input deck was used perform a fixed source (ievt = 0), adjoint (ith = 1) transport solve for the 3.8-cm
polyethylene-reflected BeRP ball. The cross sections and fission spectrum were also generated by SCALE [19]. The
adjoint right-boundary source “sirite” is the detector response function for the nPod neutron multiplicity counter in
units of counts

leakage neutron and was generated by Mattingly using MCNP5 R© [22].

1 0 0

adj_1npod_3_collapsed_44

/ BLOCK 1

igeom=sphere

isn=256

ngroup=44

niso=4

mt=2

nzone=2

im=2

it=760

t

/ BLOCK 2

xmesh=

0.0

3.7938

7.604

xints=

379

381

zones=

1

2

t

/ BLOCK 3

lib=xslib

i2lp1= 1

ititl= 1

names="c", "pu-239", "pu-240", "h-poly"

maxord= 5

ihm= 74

iht= 9

ihs= 31

ifido= 2

savbxs= 0

chivec=

7.8298399999999994e-03

1.8158700000000000e-02

5.0958200000000002e-02

1.6236200000000001e-01

8.7765200000000002e-02

2.4851700000000001e-02

1.1633200000000000e-01

1.2526100000000001e-01

1.5820999999999999e-01

1.6231599999999999e-01

7.4411000000000005e-02

1.0074600000000000e-02

6.4720299999999995e-04

7.7167999999999996e-04

5.1216199999999999e-05

4.3478500000000001e-08
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1.3526600000000000e-09

1.1891600000000001e-10

5.1118999999999997e-12

4.4013400000000003e-12

1.9974100000000001e-12

2.0159900000000002e-12

8.7211099999999998e-13

3.1704400000000002e-13

9.0580200000000006e-14

3.4281099999999998e-14

2.8799900000000001e-15

2.6941799999999999e-15

2.5083700000000002e-15

4.4593299999999998e-15

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

0.0000000000000000e+00

t

/ BLOCK 4

matls=

m1

pu-239 0.0460595191156

pu-240 0.00290503749976

;

m2

h-poly 0.0809882249

c 0.0404015978

;

assign=

zone1 m1 1.0 ;

zone2 m2 1.0 ;

t

/ BLOCK 5

ievt=0

isct=5

epsi= 1.00E-06

iitm=999

srcacc=no

npeg=2

avatar=1

raflux=1 rmflux=1

xsectp=2

ith=1

iitl=0

oitm=9999

sirite=
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0.00230160520555

0.00371784656128

0.00459180276459

0.00592534168591

0.00770316452173

0.00770316452173

0.00837828241201

0.00995355748932

0.0102947222336

0.0127035156593

0.0144456041245

0.0153663254116

0.0159139863479

0.0163303213353

0.0173531576995

0.0183219467911

0.0191775098412

0.020221796808

0.0207877673055

0.0208408891122

0.0208935827561

0.0207484659846

0.0203868343663

0.0198786130018

0.0174256527423

0.0111902991251

0.00234293931949

0.00234293931949

0.00234293931949

0.00118844819145

3.39570634051e-05

3.39570634051e-05

3.39570634051e-05

2.88770397554e-09

2.88770397554e-09

1.0269997652e-07

7.35069746499e-07

1.11887634574e-06

9.11283166745e-07

6.27019257584e-07

2.84650314559e-07

5.10684875829e-09

4.44314322532e-09

1.30644952429e-10

t

/ BLOCK 6

pted=0 zned=0 ajed=0

t
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